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Abstract
The technique of inelastic nuclear resonant scattering is applied to measure the
phonon density of states of thin films and nanostructured materials. Interference
effects in grazing incidence geometry significantly enhance the inelastic signal
from low-dimensional systems. Combined with the oustanding brilliance of
modern synchrotron radiation sources this allows one to determine vibrational
properties with monolayer sensitivity. An introduction into the basic principles
of the method is given, and several experimental examples are discussed.

1. Introduction

The investigation of collective excitations in reduced dimensions by means of advanced x-
ray scattering techniques will be an important field in materials science in the future. With
further progress in deposition and structuring techniques the variety of materials, as well as
their complexity, will strongly increase. Such systems will exhibit great deviations from bulk
behavior. Those deviations either limit the desired properties of new materials or they form
the basis for a new functionality. A few key areas are identified here:

(a) Thermal transport in microstructures: In a confined geometry the vibrational spectrum
is altered if the linear dimensions are comparable to the phonon mean free path. This leads
to novel features like phonon zone-folding in periodic layer structures like superlattices and
phonon confinement due to the restriction of phonon propagation to certain layers [1]. Such
size effects in the vibrational properties will be of particular technical relevance for the ther-
mal properties of thin films that are part of micromechanic and microelectronic devices [2].
Properties like thermal conductivity become more and more critical with increasing power
level and decreasing time scales of electronic and mechanical processes in those devices.

(b) Nanoscale tribology: The microscopic origin of friction is currently a subject of intense
research [3]. Friction is not only a result of structural properties like surface roughness,
but also a result of dynamical properties. The vibrational density of states (VDOS) at a
particular frequency determines how much energy can be dissipated in that mode. The
design of solids with a gap in the VDOS over a critical region of frequencies could pre-
vent energy losses caused by friction. Since these processes are naturally located at buried
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interfaces, inelastic x-ray spectroscopy with its great penetration power and high surface
sensitivity is the ideal tool to study such systems.

(c) Smart materials based on lattice instabilities: ‘Smart materials’ rely on structural phase
transitions, which allow the material to modify the domain structure or the band structure
to respond to external parameters like temperature, pressure, electric or magnetic fields [4].
The underlying physics of these phase transitions is intimately related to lattice instabili-
ties with soft phonon modes. In the future new materials with a transformation behaviour
based on strongly modified phonon dispersion relations will emerge. Particular examples
are ferroelastic and martensitic transformations as the origin of the shape-memory effect
that is frequently applied in sensor/actuator systems. Since the efficiency increases with
decreasing actuator size there is a strong driving force for further miniaturization into the
100 nm regime. It will be important to determine how the confined geometry of thin films
and microstructures affects the fundamental properties of such devices.

The above list indicates that tuning or even tailoring of phononic spectra to specific purposes
will be of increasing importance in the future, and a field of phonon engineering can
be envisaged with many similarities to the common band gap engineering of electronic
properties. However, a full tunability of these properties will only be possible with a thorough
understanding of the underlying processes. The increasing miniaturization of structures
requires the further development of existing spectroscopic techniques or the development
of new, particularly suited techniques.

The measurement of vibrational properties of thin films is conceptually difficult because
neither inelastic neutron scattering nor inelastic x-ray scattering are feasible for such small
amounts of material. On the other hand, energy-loss spectroscopy with electrons or He
atoms [5] or point-contact methods [6] may be too surface sensitive. Therefore, spectroscopic
data on vibrational excitations in thin films are usually obtained by inelastic scattering of
infrared or visible light [7]. However, the limited momentum transfer usually prohibits the
determination of the full vibrational density of states.

These limitations can be overcome by using x-ray scattering techniques. The availability
of high-brilliance, undulator-based synchrotron radiation sources has pushed forward the
development of inelastic x-ray scattering techniques with very high energy resolution [8, 9].
Presently, vibrational excitations in solids and liquids are studied with meV-resolution by
using backscattering monochromators and analysers [10–14]. While this method probes the
coherent inelastic scattering to determine the dispersion of vibrational excitations in condensed
matter, a new technique was recently introduced to measure the vibrational density of states via
inelastic nuclear resonant scattering [15–18]. This method relies on detection of time-delayed
fluorescence photons emitted by decaying Mössbauer nuclei that were excited by synchrotron
radiation, i.e. resonant nuclei in the sample are used as energetic analysers. The yield of those
fluorescence photons as a function of energy gives a direct measure of the vibrational density
of states of the Mössbauer atoms in the sample.

This article describes the basic principles of this technique and its particular application
to determine the vibrational properties of thin films. It is intended to give a basic description
of the scattering method as well as an introduction into unique applications of this new
technique. The first section gives an introduction into the underlying theoretical principles,
the determination of the phonon density of states (DOS) from the measured data and the
derivation of thermodynamical quantities. The next section then deals with the application of
this scattering technique to thin films and describes how the measured signal can be significantly
enhanced by interference effects arising from the thin-film geometry. The following sections
then give a number of examples where this technique has been applied to thin film systems.
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2. Phonon-assisted nuclear resonant absorption

Soon after the discovery of the Mössbauer effect it became clear that nuclear resonant
absorption would be a very sensitive tool for the investigation of lattice dynamics. This was put
on a theoretical basis by the work of Singwi and Sjölander [19] and Visscher [20]. However,
typical phonon energy transfers could not be reached with the conventional Doppler technique
and radioactive sources were not strong enough to collect data with sufficient statistics. Hence,
the idea was neglected for a long time until synchrotron radiation sources had surpassed the
brilliance and spectral flux of radioactive sources by several orders of magnitude. It was in
1995 when three groups almost simultaneously reported the first phonon spectra recorded
by inelastic nuclear resonant absorption [15–17]. The experiments were performed at high-
brilliance undulator sources with energy resolutions in the range of 6 meV. Since then the
technique has made impressive progess and nowadays phonon spectra are routinely recorded
with sub-meV energy resolution [21]. Moreover, the enormous brilliance of undulator radiation
at third-generation synchrotrons renders this technique sensitive to very small sample volumes
like thin films. In the following I will describe the basic features of inelastic nuclear resonant
scattering and demonstrate the first application of this technique to study vibrational properties
of thin films.

Resonant nuclei in condensed matter provide a very accurate energy reference with a resolution
that is only limited by the natural linewidth of the transition. If the energy of the incident
radiation is off resonance, excitation of nuclei may be assisted by creation or annihilation
of phonons in the sample. Resonance excitation takes place if the energy of the photon
plus the energy transfer with the vibrational mode equals the resonance energy. Instead of
tuning the incident photon energy relative to the energy of the scattered photon (as is the
case in conventional inelastic x-ray scattering [8, 9]), one tunes the incident energy relative
to the nuclear resonance. The pulsed time structure of synchrotron radiation permits the use
of timing techniques to discriminate the weak delayed nuclear response against the intense
electronic scattering. Thus, the energy dependence of the yield of incoherent nuclear decay
products (conversion electrons or subsequent K-fluorescence photons) gives a direct measure
of the number of phonon states in the sample from which the phonon density of states can
be derived [16]. An excited nucleus may decay via two channels: radiative decay and
internal conversion. The relative probability of these channels is 1/(1 + α) and α/(1 + α),
respectively, where α is the conversion coefficient. Since for most Mössbauer isotopes α > 1,
the dominating channel is internal conversion. Depending on the experimental situation, the
following decay channels can be used as the inelastic signal.

(a) Nuclear resonant fluorescence: The incident photon is absorbed and reemitted by the
nucleus.

(b) Conversion electron emission: The excitation energy of the nucleus is transferred to
the electron shell, so that an electron is emitted. Due to the small escape depth of the
electrons, this method has a potentially high surface sensitivity.

(c) Atomic fluorescence following internal conversion: After emission of a conversion
electron, the electronic recombination leads to emission of a fluorescence photon.
However, if the nuclear transition energy is below the K-edge, K-fluorescence is not
possible, as in case of 119Sn [22, 23]. Since L-fluorescence photons are often too low in
energy to be efficiently detected, case (a) has to be used then.

A synopsis of the experimental method is shown in figure 1: The incident radiation is
monochromatized to an energy width in the meV range by employing subsequent high-order
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Bragg reflections in dispersive geometry [24]. Particular crystal arrangements lead to energy
resolutions well below 1 meV [21]. The monochromatic radiation hits the thin-film sample
under grazing angles. Thin-film interference effects may enhance the yield of fluorescence
photons significantly. Moreover, by tuning the angle of incidence, the depth interval can be
selected over which the vibrational spectrum of the sample is probed. The incoherent radiation
is detected by a time-resolving detector, preferably an avalanche photodiode (APD) [25, 26].
The nuclear fluorescent radiation is discriminated against the prompt radiation by time gating.
This requires a bunch pattern in the storage ring with sufficiently large spacing between
neighbouring bunches. The energy dependence of the fluorescence yield is obtained by tuning
the monochromator energy around the nuclear resonance. After decomposition of the phonon
spectrum into the multiphonon contributions, the phonon density of states can be determined
from the 1-phonon contribution. In the following I want to elaborate on the quantitative aspects
of this method. In an incoherent scattering process the total yield of delayed K-fluorescence
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Figure 1. Synopsis of the method of inelastic nuclear resonant scattering: (a) Scheme of the
experimental setup with high-resolution monochromator (HRM) and detection of fluorescence
quanta over the solid angle with a large-area avalanche photodiode (APD). (b) Time discrimination
of the delayed nuclear fluorescence after excitation at t = 0. (c) Phonon spectrum of bcc Fe,
recorded with an energy resolution of 5 meV. d) 1-, 2- and 3-phonon contributions (solid, dashed
and long-dashed lines) as obtained from the deconvolution procedure as outlined in appendix A.
The phonon density of states derived from the 1-phonon term according to equation (A.9) is shown
in figure 4b.

photons is given by:

I (E) = I0 ρ ηK

�K

�0
σ(E) (1)

where I0 is the incident flux, ρ the effective area density of the nuclei, andηK the K-fluorescence
yield. �K/�0 = αK/(1 + α) is the ratio of the nonradiative (internal conversion) linewidth
to the natural linewidth of the nuclear transition. α and αK are the total and partial internal
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conversion coefficients, respectively. σ(E) is the cross section for nuclear resonant absorption
of a photon with energy E:

σ(E) = π

2
σ(E0) �0 S(E − E0) (2)

where σ(E0) ≡ σ0 is the nuclear absorption cross section at the resonance energy E0. Values
of σ0 for the Mössbauer isotopes are tabulated, e.g., in [27]. S(E) is the normalized probability
of absorption per unit energy interval at the energy E. According to Singwi and Sjölander [19]
it can be written as:

S(�k0, E) = 1

2π
Re

∞∫
0

dt e−i E t−(1/2)�0 |t | F(�k0, t) (3)

with

F(�k, t) = 〈 e−i�k·�r(0) ei�k·�r(t) 〉 (4)

where Re indicates the real part of the integral and the angular brackets stand for averaging
over all initial lattice states. The function F(�k, t) is often referred to as the self-intermediate
scattering function. It describes the correlation between the positions of one and the same
nucleus at different moments separated by the time interval t . It should be noted that S(�k0, E)

does not depend on the direction of the wavevector �kS of the scattered photon and is thus
independent on the momentum transfer �q = �kS − �k0. However, inelastic nuclear resonant
absorption depends on the direction of the incident wavevector �k0 and is therefore anisotropic
in general [28, 29]. The anisotropy vanishes only in the spherical symmetrical (isotropic)
limit, i.e., for cubic crystals and polycrystalline samples 1. This will be discussed in detail
in appendix B, because it affects the important question under what conditions the method of
nuclear inelastic absorption yields the exact phonon density of states. Since the experiments
discussed in this article can be treated in the isotropic limit, I will drop the explicit dependence
on �k0 in the following.

The concept of the self-intermediate scattering function S(E) provides a very general
description of the influence of lattice dynamics on resonant absorption. In the approximation
of a harmonic lattice, S(E) can be written as a sum over contributions from multiple-phonon
excitations as follows [31]:

S(E) = fLM

(
δ�(E) +

∞∑
n=1

Sn(E)

)
(5)

where fLM is the Lamb–Mössbauer factor of the nuclei and δ�(E) is a Lorentzian of width
�. Since the nuclear linewidth � is orders of magnitude smaller than typical phonon energies,
this term can be approximated by the Dirac δ-function because lim�→0 δ�(E) = δ(E).

The function S(E) allows us to extract a number of quantities that characterize the
properties of the nuclei in the lattice. They are expressed by the various moments of S(E),
often referred to as Lipkin’s sum rules [32, 33]:∫

E S(E) dE = ER (6)∫
(E − ER)2 S(E) dE = 4 ER T (7)∫
(E − ER)3 S(E) dE = h̄2

m
ER K (8)

1 In this case F(�k, t) is the spatial Fourier transform of the space-time self-correlation function Gs(�r, t) introduced
by van Hove [30].
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where ER = E/2mc2 is the recoil energy of the free atom, m is the nuclear mass, T is the
average kinetic energy of the resonant nuclei and K is the mean force constant of the bound
nuclei. The first of these sum rules expresses the remarkable fact that the average energy
transfer to the lattice per photon emission is just the recoil energy of the free atom. These sum
rules are of great importance for the decomposition of S(E) into the multiphonon contributions.
The phonon density of states D(E) is then determined from the single-phonon contribution. A
detailed outline of the decomposition procedure is given in appendix A. Once D(E) has been
determined, other quantities like lattice specific heat or vibrational entropy can be derived. As
will be shown in the following, the method described here offers a unique way to determine
such quantities even for systems of reduced dimensionality.

3. Enhanced fluorescence yield due to thin-film interference

The inelastic signal from thin films can be significantly enhanced by interference effects in
grazing-incidence geometry. The intensity enhancement results from x-ray standing waves
that form above total reflecting boundaries due to superposition of incident and reflected
waves [34]. A selection of some typical geometries is shown in figure 2. The right side shows
the intensity of the radiation as a function of depth in the sample. At the critical angle, for
example, an antinode of the standing wave coincides with the surface, where the intensity
peaks with up to four times the incident intensity, see figure 2(a). For the study of thin films,
this method becomes particularly effective when the layer under investigation is deposited on
a highly reflective substrate, i.e., a material of higher electron density. A substantial intensity
enhancement inside the layer is achieved if the layer thickness d is an integer multiple of the
standing wave period, because waves that are repeatedly reflected at the boundaries then add
up constructively [35–37], see figure 2(b). The normalized intensity I in depth z of a single
layer with thickness d on a total reflecting semi-infinite substrate is given by 2 :

I (z) =
∣∣∣∣E(z)

E0

∣∣∣∣
2

=
∣∣∣∣t01

eigz − r12e2igde−igz

1 + r01r12e2igd

∣∣∣∣
2

(9)

where g is the z-component of the wavevector in the layer material that is given in the grazing-
incidence limit by g = nk0ϕ with n being the refractive index of the layer material, k0

the wavenumber of the radiation and ϕ the angle of incidence. tij and rij are the Fresnel
transmission and reflection coefficients of the interfaces between adjacent media, where indices
i, j = 0,1,2 label the vacuum, layer, and substrate, respectively. The intensity enhancement is
most pronounced if the film under study is sandwiched between two highly reflecting layers,
see figure 2(c). Since the energy transport takes place parallel to the layer boundaries, such
layer systems can be regarded as x-ray waveguides [39]. Depending on the film thickness, a
certain number of guided modes can be excited, which show up as minima in the rocking curve
of the layer system between the critical angles of the layer and the substrate material. Every
signal that is derived from the electric field inside the layer can be increased by designing the
layer system as an x-ray waveguide and coupling the incident beam into a guided mode by
proper adjustment of the angle of incidence.

In the experiments described here, the detector was placed so that mostly fluorescence
photons emitted normal to the film plane were counted. Therefore absorption of the
fluorescence radiation in the sample can be neglected, and the fluorescence yield is proportional
to the integral over the intensity distribution along the z coordinate inside the layer. For a given

2 This result is derived from equation (4.14) in [38].
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Figure 2. Thin-film interference effects to enhance the fluorecence signal from surfaces and
thin films. The graphs show the specular reflectivity of the structures (middle column) and the
field intensity as a function of depth (right column). The superposition of incident and reflected
waves leads to standing-wave formation (a) above a total-reflecting surface at the critical angle.
An antinode of the standing wave coincides with the surface, (b) inside a thin film of FeB on a
total-reflecting Pd substrate, (c) inside a Pd/C/Pd sandwich structure that acts as x-ray waveguide
structure. Due to a very strong intensity enhancement, this geometry allows to probe the dynamical
properties of nanoparticles that are placed in the centre of the C-spacer layer, for example.

deviation E of the incident energy from the nuclear resonance energy, the flux of delayed K-
fluorescence photons emitted in the full solid angle is then given by:

I (E) = I0 ρ σ0
ηK αK

1 + α

π

2
�0 S(E)

1

d

d∫
0

I (z) dz (10)

where I0 is the incident flux, ρ is the area density of the nuclei as seen from the direction of
the incident beam, σ0 the nuclear resonant cross section, ηK the fluorescence yield. α and αK

are the total and partial internal conversion coefficients, respectively, �0 is the nuclear level
width and S(E) is the inelastic absorption probability per unit of energy. For a single layer on
a total reflecting backing, for example, I (z) is given by equation (10).

4. Phonon damping in thin films of polycrystalline Fe

In this experiment we have measured the phonon DOS of 57Fe thin films to identify effects
of the confined geometry on the vibrational spectrum [40]. The experiments were carried out
at the undulator beamline 3-ID of the APS. The incident radiation was monochromatized to
an energy bandwidth of 5.5 meV. Delayed fluorescence photons were counted within a time
range of 12–100 ns after excitation with a large area avalanche photodiode (APD) that was
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placed right above the film plane. Two films were prepared, consisting of polycrystalline α-Fe
(enriched to 95% in 57Fe) with thicknesses of 13 nm and 28 nm, respectively. They were
deposited at room temperature by radiofrequency (rf) sputtering in an Ar atmosphere onto a
superpolished glass-ceramics substrate (ZERODUR).

Figure 3. (a) Electronic rocking-curve of 13 nm Fe on Pd. A guided mode is excited at an angle of
4.2 mrad that appears as minimum in the reflectivity between the two critical angles of Fe and Pd.
The inset shows the depth dependence of the intensity inside the layer. (b) Angular dependence
of the yield of delayed fluorescence from the Fe film, with the photon energy 20 meV above the
resonance. The yield peaks at the angle where the guided mode is excited. The inset shows the
phonon spectrum that was recorded at this angle. Solid lines are theoretical fits [40].

The 13 nm thick film was deposited onto a 20 nm thick Pd layer to obtain a significant
intensity enhancement via x-ray interference in the film, as illustrated in figure 3. The DOS for
both films is shown in figures 4(c) and (d). For comparison, the DOS of bulk α−57Fe, obtained
from a 10 µm thick foil under the same experimental conditions, is shown in figure 4(b).
Figure 4(a) shows the DOS of bulk bcc Fe as calculated in a Born–von Karman model with force
constants obtained from neutron data [41]. The peak at 35 meV corresponds to longitudinal
phonons close to the boundary of the first Brillouin zone, while the two peaks at 23 meV and
27 meV mainly belong to the van Hove singularities of transverse phonons [42]. The most
obvious feature in the film DOS is the shape of the peak at 35 meV, which suggests phonon
damping in the Fe films.

In order to describe the measured DOS of the films, D(E), we have applied the model of a
damped harmonic oscillator (DHO) [43] as was used in a similar study on Fe nanocrystals [44].
This model contains as the only adjustable parameter the quality factor Q that describes the
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Figure 4. (a) Phonon DOS of bulk Fe, from which the calculations (solid lines) for the following
experimental data were derived: (b) DOS of bulk Fe, (c) DOS of 28 nm Fe on ZERODUR, (d)
DOS of 13 nm Fe on 20 nm Pd on ZERODUR. The dotted line in (b) corresponds to the solid line
in (d). The energy resolution in the experiments was 5.5 meV.

damping of vibrational modes. Comparing the results of the Fe films with that of bulk Fe, the
most obvious feature is the shape of the peak at 35 meV, which suggests phonon damping in
the Fe films. At each energy E′ of the calculated DOS D0(E) of bulk Fe, we have assumed
an energy distribution given by h(E′, E) [43]:

D(E′) =
∞∫

0

h(E′, E)D0(E) dE (11)

h(E′, E) = 1

πQE′
1

(E′/E − E/E′)2 + 1/Q2
. (12)

The physical basis for this choice is that the DHO model resembles the inelastic part of
the dynamical structure factor of a system with anharmonic interactions that lead to phonon
decay [45]. It is frequently applied in inelastic neutron [46] and x-ray scattering [14] and
seems to be reasonable if the damping is not too large. In the evaluations presented here, the
quality factor Q was the only parameter used to fit the data.

The DOS of the 28 nm thick Fe film shown in figure 4(c) was described with Q = 25(2),
while for the 13 nm thick Fe film a value of Q = 13(1) was obtained [40]. For a direct
comparison with bulk bcc Fe, the calculated DOS of the 13 nm Fe film is drawn as a dotted
line in figure 4(b). The discrepancies between both calculated DOS reveal the features that are
introduced by the damping. The high-energy tail is smeared out over a wide range of energies,
the peaks due to the van Hove singularities are smoothed, and there is a slight increase of the
DOS at low energies, caused by the long tails of the DHO function.

In spite of the good agreement, there remains an excess in the measured DOS over the
calculated curve at low energies. Low-energy excitations are often linked to vibrational states
in regions with low density or a high degree of disorder. A strong excess of such modes
compared to bulk Fe has been observed in nanocrystalline Fe with an average particle size of
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10 nm, where a large fraction of the Fe is close to or within surface oxide layers [44]. For
the Fe films, the excess at low energies is considerably smaller, probably because the relative
contribution from surface and interface regions is small. In the case of the 28 nm film, the
thickness of the surface oxide layer is small compared to the total thickness; in the case of the
13 nm film on Pd, the electromagnetic field intensity peaks inside the Fe layer with a relatively
small intensity at the interfaces. This is supported by the observation that the DOS of the
Fe films does not show modes above 50 meV, which reflects the response of the Fe atoms to
high-energy vibrations of O atoms in surface oxides [44].

An enhancement of low energy modes is often found in systems with structural
irregularities and is attributed to softening of transverse phonons. The phonon DOS in this
energy region for both samples is shown in figure 5, plotted versus E2. The DOS is to a good
approximation quadratic in energy, as expected from the Debye model. The slope indicates
the sound velocity in the Fe films to be larger than in the bulk.
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Figure 5. Low-energy region of the phonon DOS of the Fe thin films and bulk Fe from figure 4
plotted against E2.

The observed differences in the Q values for both films are most likely related to the layer
thickness d . Taken as the phonon mean free path, the layer thickness then limits the phonon
lifetime in the films. Since the average crystallite size in polycrystalline thin films is in the
same range as the layer thickness, this consideration holds also for in-plane phonons scattered
at grain boundaries. Stresses originating at the layer boundaries, especially from the surface
oxide, may propagate into the layer and give rise to additional scattering processes that shorten
the phonon lifetime even more. It should also be noted that in Pd metal there are no phonon
modes above 29 meV [42], resulting in a strong confinement of the high-energy modes in the
Fe film on Pd.

Although the microscopic origin for the damping could not be discerned here, it is a
remarkable fact that the DOS of two different films can be described within the same model
with a single parameter. Remaining discrepancies may be due to extra soft modes and slightly
different damping of transverse and longitudinal modes. We expect to resolve such effects
with recently achieved energy resolutions in the sub-meV range [21]. The measurement of the
effective phonon damping may be applied, e.g., to estimate the thermal resistivity of thin films
in novel microstructures [2].

5. Lattice dynamics of Fe islands on W(110)

The vibrational properties of clusters, nanoparticles, and nanocrystalline materials have
attracted considerable attention recently, because strong deviations from bulk behaviour have
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been found [44]. A particular route for production of nanosized particles is the self-organized
growth via condensation the gas phase [47], colloidal agglomeration in solution [48] or
the formation on single-crystalline surfaces [49]. In the experiment reported here we have
investigated nm thick Fe islands on a W(110) surface3. The Fe islands, enriched to 95% in
57Fe, were prepared under ultrahigh-vacuum conditions by thermal evaporation. Deposition of
a few monolayers and subsequent heating to about 1000 K leads to the formation of separated
and well ordered 3D islands [50]. The morphology of these islands is shown in figure 6(a).
The surface of the islands is atomically flat. Their long axis points along the W[001] direction.
A cross section through a typical Fe island along the W[001] direction is shown in figure 6(c).
They are of bcc(110) type with the lattice constant of bulk Fe, as confirmed via x-ray diffraction,
shown in figure 6(b). After preparation and characterization, the samples were capped with a
5 nm layer of Ag.
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Figure 6. (a) STM image of Fe Islands on W(110). The long axis of the islands points into the
W[001] in-plane direction. (b) X-ray diffraction from the (110) reflection of the W substrate and
the Fe islands. The dotted line is a theoretical simulation according to the dynamical theory of
x-ray diffraction, proving the good crystalline quality of the Fe islands. (c) Cross section through
two typical Fe islands along the W[001] direction.

The experiment was carried out at the nuclear resonance beamline ID18 of the ESRF
(Grenoble, France). A high-resolution crystal monochromator provided an energy resolution
of 4.4 meV. The sample was illuminated in grazing incidence geometry under an angle of 4.5
mrad, close to the critical angle of W. Due to formation of standing waves above the surface,
the maximum fluorescence yield is expected at this angular position. A phonon spectrum was
recorded by tuning the incident energy over a range of ±60 meV around the resonance, while
monitoring the yield of delayed K-fluorescence photons. The data are shown in figure 7(a),
taken during an acquisition time of 12 h. From the phonon spectrum the VDOS was derived
according to the procedure described in [16]. The result is shown in figure 7(b). The dashed
line represents the VDOS of bulk bcc Fe, convoluted with the same energy resolution function.
Pronounced differences appear especially at low phonon energies, where an excess of the
island VDOS over the bulk VDOS can be observed. While the damping of vibrational modes
at high energies can be described in a phenomenological model [40], the origin of the features

3 The experiment was performed in close collaboration with K H Meiwes-Broer, J Bansmann and V Senz, University
of Rostock.
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b)a)

Figure 7. (a) Phonon spectrum of Fe islands on W(110) recorded with an energy resolution of 4.4
meV. (b) Vibrational density of states of Fe islands on W(110) as derived from the phonon spectrum
in (a). The dashed line is the calculated phonon DOS of bulk bcc Fe [41, 42], convoluted with the
energy resolution function.

at low energies is not fully understood yet. However, similar structures appear also in Fe/Au
multilayers where the Fe layer thickness is comparable to the thickness of the Fe islands [51].

6. Vibrational properties of thin-film vitreous FeBO3

The intensity enhancement due to thin film interference can be very efficiently used if the
investigated film is sandwiched between two total reflecting layers, as shown in figure 2(c). This
has been done in case of a 13 nm thick layer of vitreous FeBO3, produced by sputter deposition,
where the fraction of 57Fe in Fe was only 2% (natural abundance). The measurement was
possible due to a 10-fold enhancement of the x-ray intensity in a Pd/FeBO3/Pd waveguide
structure. The amount of 57Fe in that sample was equivalent to one monolayer. The phonon
spectrum is shown in figure 8, recorded at the ESRF with an energy resolution of 4.4 meV.
Here the data acquisition time was about 6 hours. The phonon energies in this sample are
considerably lower than in the case of crystalline FeBO3 [28]. Although the statistical quality
of the data does not allow a derivation of the VDOS, the measurement demonstrates the high
sensitivity of the method. With increasing brilliance of modern synchrotron radiation sources
and optimized x-ray optics on the beamlines, the signal from single monolayers will be intense
enough to study lattice dynamics of nanostructures with atomic resolution [52].

7. Summary and perspectives

In this review I have presented an introduction into the technique of inelastic nuclear resonant
scattering of synchrotron radiation with particular emphasis on the vibrational properties of thin
films and nanostructures. This method yields the partial VDOS of the Mössbauer atoms in the
sample. This opens the unique possibility to selectively determine the vibrational properties of
nanostructures that contain the resonant isotope. Due to the inherent isotope specificity of the
method there is no need to discriminate against inelastic signals from surrounding materials. A
substantial signal enhancement is obtained by making use of x-ray standing waves at surfaces
or in thin films. Due to the outstanding brilliance of third-generation synchrotron radiation
sources vibrational properties can be determined with high spatial resolution.

While the experiments described here have probed the vibrational properties of the sample
in thermal equilibrium, the method offers interesting perspectives for probing non-equilibrium
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Figure 8. Phonon spectrum of 13 nm vitreous FeBO3 in a Pd/FeBO3/Pd waveguide structure,
recorded with an energy resolution of 4.4 meV (from [53]). The solid line is a guide to the eye.

phonon states. Since the incoherent signal reflects the phonon occupation number at the very
moment of excitation this method is very suitable to be applied in pump-probe experiments.
The coupling of the pump pulse is crucial for the spectral distribution of the phonons and
their corresponding lifetime. A simple heat pulse will create thermal phonons with lifetimes
in the ps range or below. Highly monochromatic phonons with lifetimes of several 100 ns
can be created by coupling the laser pulse to impurity resonances that decay via electronic
relaxation [54]. If the photon energy of the probe pulse is tuned around the nuclear resonance
for a fixed delay between pump and probe pulses, one obtains the phonon spectrum that has
developed during this time interval. On the other hand, tuning the time delay between the
pump and probe pulse at a fixed off-resonance x-ray energy allows us to monitor the time
evolution of particular vibrational states. The investigation of such non-equilibrium phonon
states provides valuable information about the thermal transport properties of the sample. An
immediate application would be the study of the dynamics of heat-transfer on nanoscopic
length scales. Due to the isotopic sensitivity of the absorption process an extremely high
spatial resolution can be obtained by the use of probe layers.
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Appendix A. Extraction of the phonon DOS

In this section I summarize how to extract the phonon density of states D(E) from a measured
phonon spectrum. This procedure is basis of a number of evaluation programs and has been
described in detail in [55–57]. According to equations (1) and (5), the measured phonon
spectrum I (E) can be decomposed into an elastic part that is described by a δ function and an
inelastic part S ′(E) 4:

I (E) = a S ′(E) + b fLM δ(E). (A.1)

The most important aspect for a quantitative data evaluation is the determination of the
normalization constants a and b. Unfortunately, due to saturation effects that occur at
resonance, those constants are not equal and a common normalization of elastic and inelastic
contributions is not possible. Obviously, b fLM can be determined from the value I (0) of
the measured spectrum. The normalization constant a is determined via Lipkin’s sum rule,
equation (6) for the first moment of the measured spectrum:

a = 1

ER

∫
I (E)E dE. (A.2)

The subtraction of the elastic contribution yields the inelastic part of the measured spectrum
I ′(E) := a S ′(E). Since

∫
S ′(E) dE = 1 − fLM , we immediately obtain for the Lamb–

Mössbauer factor:

fLM = 1 − 1

a

∫
I ′(E) dE (A.3)

With this information the measured spectrum can be decomposed into multi-phonon
contributions. In the harmonic approximation, the one-phonon contribution S1(E) is directly
related to the phonon density of states D(E):

S1(E) = ER D(E)

E (1 − e−βE)
(A.4)

The higher-order contributions are given by successive convolutions with the one-phonon term:

Sn(E) = 1

n

∫
Sn−1(E − E′) S1(E

′) dE′ n > 1 (A.5)

Using the convolution theorem, this equation has a very simple expression in Fourier space:

S̃n(t) = 1

n
S̃n−1(t) S̃1(t). (A.6)

This recursive relation has the closed solution:

S̃n(t) = 1

n!
[S̃1(t)]

n. (A.7)

Thus, taking the Fourier image of equation (5) and performing the summation over the multi-
phonon contributions, one obtains:

S̃(t) = fLM eS̃1(t). (A.8)

Finally, this expression can now be resolved for the one-phonon contribution:

S1(E) =
∫

dt e−i E t ln

[
S̃(t)

fLM

]
. (A.9)

4 For a clearer view on the basic concepts, I did not include the instrumental resolution function here. It enters as an
additional convolution operation, which is shown below.
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This method is known as the Fourier-Log decomposition [58].
Now we include the resolution function R(E) into the formalism, i.e., equation (1) is

replaced by:

I (E) =
∫

R(E − E′) {aS(E′) − b′ fLM δ(E′)} dE′ (A.10)

R(E) can be measured very accurately by monitoring the intensity of elastic forward scattering
while tuning the incident energy. Including the convolution with R(E) into the above
formalism, the expression equation (A.9) for the single-phonon contribution turns into:

S1(E) =
∫

dt e−i E t ln

[
1 +

Ĩ ′(t)

a fLM R̃(t)

]
(A.11)

where Ĩ ′(t) denotes the Fourier image of the measured phonon spectrum with the elastic peak
subtracted. The finite width of the resolution function introduces a number of problems that
should be discussed here briefly. It is obvious from equation (A.3) that the determination of
fLM and the single-phonon contribution critically depends on the subtraction of the elastic peak.
Then an assumption has to be made how to describe the region under the elastic peak. In many
cases it is reasonable to insert a one-phonon contribution from a Debye solid. However, this
procedure has its limits in case of samples with non-Debye behaviour or a strong contribution
from multi-phonon terms under the elastic peak. The latter case applies for samples with
small fLM and can be cured to some extent by an iterative algorithm [56]. Also the numerical
problems that arise from the deconvolution, i.e. the division by R̃(t), are elaborated in [56].

Once S1(E) has been obtained, the phonon density of states D(E) can be obtained via
equation (A.4). Taking the condition of detailed balance into account, i.e.,

S1(E) = e−β E S1(−E) (A.12)

that is independent of the material, one can use both wings of the phonon spectrum to determine
D(E). The result is:

D(E) = E

ER

( S1(E) + S1(−E) ) tanh

(
βE

2

)
with E � 0. (A.13)

Once D(E) has been determined for a particular material, a number of thermodynamic
quantities can be derived. As a first example we consider the phonon contribution to the
lattice specific heat. The contribution of lattice excitations to the internal energy is given by:

U = N

∫
E n(E)D(E) dE (A.14)

where N is the number of particles and n(E) = 1/(eE/kBT −1) is the Bose occupation number.
From this expression the lattice specific heat follows immediately:

cv(T ) = dU

dT
= N

kBT 2

∞∫
0

E2 eE/kBT n(E)2 D(E) dE (A.15)

Another thermodynamic quantity derived from the VDOS is the vibrational entropy:

Svib(T ) = R

∞∫
0

D(E) [E n(E)/kBT + ln(1 + n(E))] dE. (A.16)

Recent experiments indicate that the relative stability of the ordered and the disordered states
of a compound may be significantly affected by their difference in vibrational entropy [59].
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Thus, changes in vibrational entropy can be important for the thermodynamics of solid-state
phase transitions.

Summarizing, the partial VDOS can be determined from inelastic nuclear resonant
scattering almost model-independent. The only assumption made here was that of an isotropic,
harmonic lattice. Since the scattering process is fully incoherent, the density of states can be
extracted without any approximation or correction for coherent scattering processes. This was
investigated in detail by Sturhahn and Toellner [60] who showed that those contributions do
not exceed 0.001 of the incoherent channel in case of 57Fe.

It is interesting to compare inelastic nuclear resonant scattering with incoherent inelastic
neutron scattering. The data evaluation procedure to extract the VDOS from the measured data
is basically the same. In the case of neutron scattering, however, it can be difficult to obtain the
exact VDOS directly, in particular if the elements under investigation do not exhibit a significant
incoherent scattering cross section, as is the case for Fe. It is the advantage of inelastic nuclear
resonant absorption detected via fluorescence to be a fully incoherent process. Therefore,
this technique may complement inelastic neutron scattering in many cases. An instructive
comparison between both scattering techniques can be found, e.g., in [61] for the investigation
of the vibrational properties of quasicrystals.

Appendix B. The exact phonon density of states and the isotropic limit

Inelastic nuclear resonant absorption yields the partial phonon density of states, projected on
the direction of the incident beam [29]:

D̃(E, �s) = 1

(2π)3

V

NR

∑
m

∑
j

∫
d�q δ(E − h̄ωj (�q)) |�s · �ej,m(�q)|2. (B.1)

This differs from the exact phonon density of states that is defined as [62]:

D(E) = 1

(2π)3

V

3N

∑
j

∫
d�q δ(E − h̄ωj (�q)). (B.2)

Here, V is the volume of the unit cell and N and NR are the total number of atoms and the
number of resonant atoms in the unit cell, respectively. The indices m and j are used to label the
resonant atoms in the unit cell and the vibrational modes, respectiveley. Accordingly, �ej,m(�q)
is the polarization vector of the vibrations of the mth resonant atom and the j th vibrational
mode with wavevector �q. �s is the unit vector along the direction of the incident beam. One
notices that D̃(E, �s) differs from the exact density of states D(E) because the contributions
from the vibrational modes of the resonant atoms are weighted by the projections of their
polarization vectors on the direction of the incident beam. However, there are two important
cases where inelastic nuclear scattering yields the exact phonon density of states of the sample.
These are:

• single crystals with a cubic Bravais lattice, and
• polycrystals with an arbitrary monoatomic lattice.

In these cases the inelastic absorption appears to be isotropic, as shown in the following.

Appendix B.1. Single-crystalline systems

To discuss the general anisotropic case we introduce the second-rank Cartesian tensor:

T µν(E) = 1

(2π)3

V

NR

∑
m

∑
j

∫
d�q δ(E − h̄ωj (�q))(�ej,m)µ (�ej,m)∗ν (B.3)
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With this definition the projected DOS can be written as a quadratic form:

D̃(E, �s) =
∑
µ

∑
ν

sµ T µν(E) sν (B.4)

Any such tensor can be decomposed into its trace T , an antisymmetric part Aκ and a traceless,
symmetric part Sµν [63], i.e.,

T µν = 1

3
δµνT + Aκ + Sµν. (B.5)

These three quantities transform in the same way as the spherical harmonics of order 0, 1
and 2, respectively. As the antisymmetric part does not contribute to the quadratic form in
equation (B.4), we have to consider just two contributions. While the trace T is invariant under
rotations in space, the symmetric part contains the anisotropies [64]:

sµ Sµν sν = A(p) Y20(:, ϕ) + A(a) Re[Y22(:, ϕ)] (B.6)

where the polar anisotropy A(p) and the azimuthal anisotropy A(a) are determined by the
rotational symmetry of the crystal. These anisotropies vanish for all cubic Bravais lattices.
In the other Bravais lattices these anisotropies are nonzero [64], so that inelastic nuclear
absorption is generally anisotropic, as has been shown in the case of FeBO3 [28]. However,
an anisotropic crystal structure does not necessarily imply anisotropic nuclear absorption; the
latter may vanish due to the specific basis of the unit cell. For example, no anisotropy in nuclear
inelastic scattering has been found for hematite (Fe2O3), although it has the same space group
as FeBO3 [65].

Appendix B.2. Polycrystalline systems

In polycrystalline samples without texture one averages over all directions of the incident
beam:

1

4π

∫
d�sD̃(E, �s) =

∑
µ

∑
ν

T µν(E)
1

4π

∫
d�s sµ sν. (B.7)

The integral over all directions vanishes for the nondiagonal components of the tensor, while
it is 1/3 for the diagonal components. This allows us to partly separate the summation over
the vibrational modes from the sum over the resonant atoms in the unit cell [66], so that
equation (B.1) then turns into:

D̃(E, �s) = 1

(2π)3

V

3N

∑
j

∫
d�q δ(E − h̄ωj (�q))

∑
m

|�s · �ej,m(�q)|2. (B.8)

For a monoatomic lattice the sum over all resonant atoms is of course identical to the sum over
all atoms in the unit cell. That sum equals unity, by definition. Then the above expression
merges into the exact definition of the DOS as given by equation (B.2).
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